

Figure 2. Correlation diagram relating the observed ionization energies (MNDO values in parentheses) for PhOH with those of PhO - (1). The central column compares means of corresponding S-T pairs with (in parentheses) MNDO values while the last column compares the observed ionization energies with (in parentheses) those calculated by UMNDO and reduced by 1 eV to allow for the systematic error noted in the text. For a discussion of the high-lying oxygen lone-pair orbital in 1 see ref 11.
first T and S ionizations of $9 .{ }^{14}$
The heat of formation of phenoxy cation $\left[\Delta H_{\mathrm{f}}\left(\mathrm{PhO}^{+}\right)\right]$can be calculated from the adiabatic ionization energy and heat of formation of phenoxy radical. Using our value ($8.56 \pm 0.02 \mathrm{eV}$; 197.4 $\pm 0.5 \mathrm{kcal} / \mathrm{mol}$) for the former and the most recent value (11.6 $\pm 2.3 \mathrm{kcal} / \mathrm{mol}^{18}$) for the latter, we find

$$
\begin{equation*}
\Delta H_{\mathrm{f}}\left(\mathrm{PHO}^{+}\right)=209.0 \pm 2.8 \mathrm{kcal} / \mathrm{mol} \tag{2}
\end{equation*}
$$

This compares with values calculated by MNDO (203.2 $\mathrm{kcal} / \mathrm{mol}$) and estimated by mass spectrometry ($\leq 224 \mathrm{kcal} / \mathrm{mol}^{5}$).
(14) The first ionization energy of 9 has been estimated by mass spectrometry to be $8.56,{ }^{15 \mathrm{a}} 8.69 \pm 0.1^{15 \mathrm{~b}}$ or $8.41 \mathrm{eV} .1 \mathrm{sc}_{\mathrm{c}}$ The $\mathrm{S}-\mathrm{T}$ separation of the resulting ion is estimated by MINDO $/ 3$ to be $1.6 \mathrm{kcal} / \mathrm{mol}$ for the ground states ${ }^{16}$ and $14.7 \mathrm{kcal} / \mathrm{mol}$ for ions with D_{54} symmetry. ${ }^{17}$ The difference between the two vertical ionizations of 9 is estimated by UMNDO to be 0.22 eV .
(15) (a) Schissel, P.; McAdoo, D. J.; Hedaya, E.; McNeil, D. W. J. Chem. Phys. 1968, 49, 5061. (b) Harrison, A. G.; Hannen, L. R.; Danben, H. J., Jr.; Lossing, F. P. J. Am. Chem. Soc. 1960, 82, 5593. (c) Lossing, F. P.; Traeger, J. C. Ibid. 1975, $97,1579$.
(16) Dewar, M. J. S.; Haddon, R. C. J. Am. Chem. Soc. 1973, 95, 5836.
(17) Dewar, M. J. S.; Haddon, R. C. J. Am. Chem. Soc. 1974, 96, 255.
(18) DeFrees, D. J.; McIver, R. T., Jr.; Hehre, W. J. J. Am. Chem. Soc. 1980, 102, 3334.

Our conclusions are currently being tested by further studies of the thermolysis of $\mathbf{2}$ and its derivatives and of the analogous phenyl benzyl ethers.

Acknowledgment. This work was supported by grants from the Air Force Office of Scientific Research (Grant 79-0008), the National Science Foundation (Grant CHE-7803213), and the Robert A. Welch Foundation (Welch F-126).

Michael J. S. Dewar,* Donald E. David
Department of Chemistry, The University of Texas at Austin Austin, Texas 78712
Received May 19, 1980

Asymmetric Synthesis in a Spinning Vessel
 Sir:

A recent communication ${ }^{1}$ claims the achievement of asymmetric synthesis in a spinning vessel. This result is very surprising because it violates the gravitational analogue of de Gennes' theorem ${ }^{2,3}$ on

[^0]the impossibility of asymmetric synthesis in a static electromagnetic field. The essence of de Gennes' theorem is that a Hamiltonian involving external static fields \vec{E} and \vec{B} is invariant under the combined symmetry of a time reversal, T, and a reflection, R, through a plane containing \vec{E} and \vec{B}. Indeed, \vec{E} is invariant, and \vec{B} changes sign under each one of these operations. ${ }^{4}$ Likewise, the gravitational field \vec{g} is invariant, and the spinning velocity $\vec{\omega}$ changes sign under T or R. (This analogy is not a coincidence: a magnetic field \vec{B} is actually due to the rotational motion of electric charges.) Thus, the Hamiltonian of a molecule in a spinning vessel is invariant under $T R$, and all the energy eigenstates and equilibrium distributions must also be invariant under $T R$.

In plain language, if we make a movie of the rotating vessel and then run that movie backward in time and reflected in a vertical mirror, we see the same \vec{g} and $\vec{\omega}$. Since the reversedreflected movie is identical with the original one, there can be no preponderance of left handed or right handed molecules, as the latter are interchanged by R and invariant under T.

However, a vessel rotating in a static electromagnetic field (for example, with \vec{E}, \vec{B}, and $\vec{\omega}$ perpendicular to each other) could in principle lead to asymmetric synthesis, because the pseudoscalar $\vec{\omega} \cdot(\vec{E} \times \vec{B})$ changes sign under any space reflection, but not under T. (From the point of view of a rotating observer, this would be seen as a rotating electromagnetic field, like in a beam of circularly polarized light.) The same is also true for $\vec{\omega}, \vec{g}$, and the natural magnetic field of the Earth, but the latter seems too weak to have an appreciable effect. In natural units ($\hbar=e=m_{\mathrm{e}}=1$), we have $g \sim 10^{-22}, B($ Earth $) \sim 10^{-8}, \omega($ Earth $) \sim 10^{-21}$, and $\omega($ ref 1$) \sim$ 10^{-14}.

Acknowledgment. I am grateful to E. A. Halevi for calling my attention to this problem.
(3) Mead, C. A.; Moscowitz, A. Tetrahedron Lett. 1977, 1063.
(4) Sakurai, J. J. "Invariance Principles and Elementary Particles", Princeton University Press: Princeton, 1964.

> Asher Peres
> Department of Physics
> Technion-Israel Institute of Technology
> Haifa, Israel
> Received May 20, 1980

Quintet State Triplet-Triplet Radical Pairs. 2

Sir:
We recently reported the first detection of a quintet state radical pair. ${ }^{1}$ Prior to that, radical pairs had only been seen in the triplet state. ${ }^{2,3}$ The quintet radical pair was observed in the low-temperature photolysis of azibenzil where the apparent primary products are the cis and trans conformers of triplet benzoylphenylmethylene, 1a and 1b. ${ }^{4}$ Two near-neighbor triplets can interact to form a quintet radical pair, Q1. Upon warming, the quintet is irreversibly converted to a new triplet, with small D and E values, which was identified as a diradical formed via spin conversion and pairing of two unpaired electrons.

We now wish to report an additional quintet state radical pair obtained in the low-temperature, $T \leq 77 \mathrm{~K}, \lambda \geq 345 \mathrm{~nm}$, photolysis of 9 -diazo-10-anthrone ($\mathbf{2 a}$) powder.
(1) Murai, H.; Torres, M.; Strausz, O. P. J. Am. Chem. Soc. 1980, 102, 5104.
(2) Kurita, Y. J. Chem. Phys. 1964, 4I, 3926; Wiersma, D. A.; Kommandeur, J. Mol. Phys. 1967, l3, 241; Ohigashi, H.; Kurita, Y. Bull. Chem. Soc. Jpn. 1967, 40, 704; Symons, M. C. R. Nature (London) 1967, 231, 1226. Geoffroy, M.; Lucken, E. A. C. Helv. Chim. Acta 1970, 53, 813.
(3) Gordy, W.; Morehouse, R. Phys. Rev. 1966, 151, 207. Niizuma, S.; Kokubun, H.; Koizumi, M. Bull. Chem. Soc. Jpn. 1971, 44, 335. Arimitsu, S.; Tsubomura, H. Bull. Chem. Soc. Jpn. 1972, 45, 1357.
(4) Murai, H.; Torres, M.; Strausz, O. P., to be submitted for publication.

Table I. Zero-Field Splitting Parameters ${ }^{a}$

species	$D, \mathrm{~cm}^{-1}$	$E, \mathrm{~cm}^{-1}$	ref
la	0.3916	0.0518	4
Q1	0.0943	0.0077	1
3a	0.3638	0.0176	this work
Q2	0.118 ± 0.005^{b}	0.0065 ± 0.0022^{b}	this work
3b	0.3179	0.0055	5
3c	0.3284	0.0086	5
3d	0.3470	0.0010	5
3e	0.3333	0.0112	5

${ }^{a} g=2.002$ was used as the best fit of 3 a and Q2. ${ }^{b}$ The spectrum was reproduced within these errors.

A complex ESR spectrum (Figure 1) having a distribution pattern similar to that of the azibenzil case ${ }^{1,4}$ was observed on irradiation and could be resolved into three different spectra: (1) an intense signal with no hyperfine structure at $g=2.003$, which is clearly a secondary photolysis product (Figure 2) and is assigned to an unidentified doublet radical; (2) a set of four absorptions ($\sim 590,4495,5179$, and 7166 G at $\nu=9.167 \mathrm{GHz}$) which is assigned to the randomly oriented triplet state of the carbene radical formed as an apparent primary product; (3) a set of absorptions consisting of at least 10 lines of weak intensity, appearing in the $100 \sim 5600-\mathrm{G}$ range.

The triplet spectrum gives zero-field splitting parameters similar to those of the triplets $\mathbf{3 b}-\mathbf{e}$

2

$$
\mathrm{a}, \mathrm{R}_{1}+\mathrm{R}_{2}=\mathrm{R}_{3}+\mathrm{R}_{4}=-\mathrm{C}_{4} \mathrm{H}_{4}-
$$

$$
b, R_{1}=R_{2}=R_{3}=R_{4}=H
$$

$$
\begin{aligned}
& c_{1}, R_{1}=R_{3}=C l, R_{2}=R_{4}=H \\
& N_{0}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{d}, \mathrm{R}_{1}=\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{R}_{4}=\mathrm{Cl} \\
& \mathrm{e}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{d}, \mathrm{R}_{1}=\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{R}_{4}=\mathrm{Cl} \\
& \mathrm{e}, \mathrm{R}_{1}+\mathrm{R}_{2}=-\mathrm{C}_{4} \mathrm{H}_{4}-\mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{H}
\end{aligned}
$$

from the photolysis of benzene 1,4-diazo oxides, $\mathbf{2 b}$-e as reported by Wasserman and Murray ${ }^{5}$ (Table I).

Finally the third, complex spectrum is assigned to a randomly oriented quintet state radical pair, Q2, formed through the interaction of two near-neighbor triplet carbenes. The zero-field splitting parameters of the quintet can be obtained from the Hamiltonian

$$
\mathscr{H}=g \beta \vec{H} \cdot \vec{S}+D\left\{S_{z}{ }^{2}-(S(S+1)) / 3\right\}+E\left(S_{x}{ }^{2}-S_{y}{ }^{2}\right)
$$

where $S=2$.
When first-order perturbation theory is used, the high-field limit and the next highest absorption of the quintet state are expressed as $H_{z}=H_{0}+3 D / g \beta$ and $H_{y}=H_{0}+3(D+3 E) / 2 g \beta$, respectively, with $D>3 E$ and $H_{0} \sim 3300 \mathrm{G}$. Assuming that H_{z} is missing probably because of its weak signal intensity and close location to the strong highest field absorption of 3 a and that the highest steplike absorption of the quintet observed corresponds to H_{y}, the exact energy levels of \mathscr{H} obtained by a numerical iteration method were used to determine the zero-field splitting parameters (Table I) from the above two absorption fields. The D and E values obtained (Table I) then reproduce the observed spectrum reasonably well. When it is assumed that the highest observed line corresponds to H_{z}, the distribution of the experimental spectrum could not be satisfactorily reproduced. The strongest absorptions, which correspond to $|m|=0 \rightleftharpoons|m|=1$ transition of the quintet, occur around 2500 G . These absorptions are superimposed on the double quantum transition of 3 a at the magnetic field predicted 6 by the values of D and E. However, by attenuating the

[^1]
[^0]: (1) Edwards, D.; Cooper, K.; Dougherty, R. C. J. Am. Chem. Soc. 1980, 102, 381.
 (2) de Gennes, P.-G. C. R. Hebd. Seances Acad. Sci., Ser. B. 1970, 270 , 891.

[^1]: (5) Wasserman, E.; Murray, R. W. J. Am. Chem. Soc. 1964, 86, 4203.
 (6) de Groot, M. S.; van der Waals, J. H. Physica (Amsterdam) 1963, 29, 1128; Wasserman, E.; Snyder, L. C.; Yager, W. A. J. Chem. Phys. 1964, 41, 1763.

